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The complex-type Padovan−p sequences

Özgür Erdağ∗, Serpı̇l Halıcı, Ömür Devecı̇

Abstract. In this paper, we define the complex-type Padovan-p se-
quence and then give the relationships between the Padovan-p numbers
and the complex-type Padovan-p numbers. Also, we provide a new Bi-
net formula and a new combinatorial representation of the complex-type
Padovan-p numbers by the aid of the nth power of the generating ma-
trix of the complex-type Padovan-p sequence. In addition, we derive
various properties of the complex-type Padovan-p numbers such as the
permanental, determinantal and exponential representations and the
finite sums by matrix methods.

1. Introduction and Preliminaries

The Padovan p-numbers {Pap (n)} for any given p (p = 2, 3, 4, . . .) is de-
fined [4] by the following homogeneous linear recurrence relation:

(1) Pap (n+ p+ 2) = Pap (n+ p) + Pap (n) ,

for n ≥ 1, with initial conditions Pap (1) = Pap (2) = · · · = Pap (p) = 0,
Pap (p+ 1) = 1 and Pap (p+ 2) = 0. When p = 1 in (1), the Padovan
p-numbers {Pap (n)} is reduced to the usual Padovan sequence {P (n)}.

The complex Fibonacci sequence {F ∗n} is defined [7] by a two-order recur-
rence equation:

F ∗n = Fn + iFn+1,

for n ≥ 0, where
√
−1 = i and Fn is the nth Fibonacci number (cf. [1, 8]).

Kalman [10] mentioned that these sequences are special cases of a sequence
which is defined recursively as a linear combination of the preceding k terms

an+k = c0an + c1an+1 + · · ·+ ck−1an+k−1,

where c0, c1, . . . , ck−1 are real constants. In [10], Kalman derived a number of
closed-form formulas for the generalized sequence by the companion matrix
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method as follows:

Ak =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
c0 c1 c2 · · · ck−2 ck−1


.

Then by an inductive argument he obtained that

An
k


a0
a1
...

ak−1

 =


an
an+1
...

an+k−1

 .
In the literature, many interesting properties and applications of the recur-

rence sequences relevant to this paper have been studied by many authors,
for example [9,11–13,16–22]. In particular, in [5] and [6], the authors defined
the new sequences using the quaternions and complex numbers, and then
they gave miscellaneous properties and many applications of the sequences
defined. In this work, we define the complex-type Padovan-p sequence. Also,
give the relationships between the Padovan-p numbers and the complex-type
Padovan-p numbers, and then we obtain generating a matrix of the complex-
type Padovan-p sequence. Furthermore, we produce the Binet formula for
this defined sequence. Finally, we give various properties of the complex-type
Padovan-p numbers such as the combinatorial, permanental, determinantal
and exponential representations, and the finite sums by matrix methods.

2. The Main Results

Now we define a new sequence that we call the complex-type Padovan-p
sequence

{
Pa

(i)
p (n)

}
as follows:

(2) Pa(i)p (n+ p+ 2) = i2 · Pa(i)p (n+ p) + ip+2 · Pa(i)p (n) ,

for any given p (p = 3, 5, 7, . . .) and n ≥ 1, where Pa(i)p (1) = · · · = Pa
(i)
p (p) =

0, Pa(i)p (p+ 1) = 1, Pa(i)p (p+ 2) = 0 and
√
−1 = i. From the relations in

the definitions of the complex-type Padovan-p numbers and the Padovan-p
numbers, we derive the following relations:

Pa(i)p (n) =


ip+1 · Pap (n) , for n ≡ 0 (mod 4),
ip+2 · Pap (n) , for n ≡ 1 (mod 4),
ip+3 · Pap (n) , for n ≡ 2 (mod 4),
ip · Pap (n) , for n ≡ 3 (mod 4).
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From the equation (2), we can write the following companion matrix:

Dp =
[
d
(p)
jk

]
(p+2)×(p+2)

=



0 −1 0 · · · 0 ip+2

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0


.

The matrix Dp is said to be the complex-type Padovan-p matrix. Then we
can write the following matrix relation:

Pa
(i)
p (n+ p+ 2)

Pa
(i)
p (n+ p+ 1)

...
Pa

(i)
p (n+ 2)

Pa
(i)
p (n+ 1)

 = Dp ·


Pa

(i)
p (n+ p+ 1)

Pa
(i)
p (n+ p)

...
Pa

(i)
p (n+ 1)

Pa
(i)
p (n)

 .

It can be readily established by mathematical induction that for n ≥ p+ 1,

(Dp)
n

=



Pa
(i)
p (n+ p+ 1) Pa

(i)
p (n+ p+ 2) ip+2 · Pa(i)p (n+ 1)

Pa
(i)
p (n+ p) Pa

(i)
p (n+ p+ 1) ip+2 · Pa(i)p (n)

Pa
(i)
p (n+ p− 1) Pa

(i)
p (n+ p) ip+2 · Pa(i)p (n− 1)

...
...

...

Pa
(i)
p (n+ 1) Pa

(i)
p (n+ 2) ip+2 · Pa(i)p (n− p+ 1)

Pa
(i)
p (n) Pa

(i)
p (n+ 1) ip+2 · Pa(i)p (n− p)

ip+2 · Pa(i)p (n+ 2) · · · ip+2 · Pa(i)p (n+ p)

ip+2 · Pa(i)p (n+ 1) · · · ip+2 · Pa(i)p (n+ p− 1)

ip+2 · Pa(i)p (n) · · · ip+2 · Pa(i)p (n+ p− 2)

...
. . .

...

ip+2 · Pa(i)p (n− p+ 2) · · · ip+2 · Pa(i)p (n)

ip+2 · Pa(i)p (n− p+ 1) · · · ip+2 · Pa(i)p (n− 1)


,

from which it is clear that detDp = ip+2. For more information on the
companion matrices, see [14,15].

Using the (Dp)
n matrix, we determine the following relationships between

complex-type Padovan-p numbers and the Padovan-p sequence for n ≥ p+1
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such that every odd integer where p ≥ 3:

(Dp)
n
=



in+4 · Pap (n+ p+ 1) in+5 · Pap (n+ p+ 2) in+2 · Pap (n+ 1)

in+3 · Pap (n+ p) in+4 · Pap (n+ p+ 1) in+1 · Pap (n)

in+2 · Pap (n+ p− 1) in+3 · Pap (n+ p) in · Pap (n− 1)

...
...

...

in−p+4 · Pap (n+ 1) in−p+5 · Pap (n+ 2) in−p+2 · Pap (n− p+ 1)

in−p+3 · Pap (n) in−p+4 · Pap (n+ 1) in−p+1 · Pap (n− p)

in+3 · Pap (n+ 2) · · · in+p+1 · Pap (n+ p)

in+2 · Pap (n+ 1) · · · in+p · Pap (n+ p− 1)

in+1 · Pap (n) · · · in+p−1 · Pap (n+ p− 2)

...
. . .

...

in−p+3 · Pap (n− p+ 2) · · · in+1 · Pap (n)

in−p+2 · Pap (n− p+ 1) · · · in · Pap (n− 1)


.

Now we concentrate on finding the Binet formulas for the complex-type
Padovan-p numbers.

Lemma 1. Let p be a positive odd integer such that p ≥ 3. The characteristic
equation of the complex-type Padovan-p numbers xp+2 + xp − ip+2 = 0 does
not have multiple roots.

Proof. Let f (x) = xp+2 + xp − ip+2. It is clear that f(0) 6= 0 and f(1) 6= 0
for all p ≥ 3. Let α be a multiple root of f (x), then α /∈ {0, 1}. Since α is
a multiple root,

f (α) = αp+2 + αp − ip+2 = 0

and
f
′
(α) = (p+ 2)αp+1 + pαp−1 = 0,

hence
f
′
(α) = αp−1 ((p+ 2)α2 + p

)
= 0.

Thus we obtain α = ±
(
−p
p+2

) 1
2 . Since p is a positive odd integer such that

p ≥ 3, f (α) 6= 0, which is a contradiction. Thus, the equation f (x) = 0
does not have multiple roots. �

Let f (x) be the characteristic polynomial of the matrixDp. Then we have
f (x) = xp+2 + xp − ip+2, which is a well-known fact from the companion
matrices. If δ1, δ2, . . . , δp+2 are roots of the equation xp+2 + xp − ip+2 = 0,
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then by Lemma 1, it is known that δ1, δ2, . . . , δp+2 are distinct. Define the
(p+ 2)× (p+ 2) Vandermonde matrix V p+2 as follows:

V p+2 =


(δ1)

p+1 (δ2)
p+1 . . . (δp+2)

p+1

(δ1)
p (δ2)

p . . . (δp+2)
p

...
...

...
δ1 δ2 . . . δp+2

1 1 . . . 1

 .
Assume that V p+2

j,k is a (p+ 2)× (p+ 2) matrix obtained from the Vander-
monde matrix V p+2 by replacing the jth column of V p+2 by W p

t , where W
p
t

is a (p+ 2)× 1 matrix as follows

W p
t =


(δ1)

n+p+2−t

(δ2)
n+p+2−t

...
(δp+2)

n+p+2−t

 .
Then we can give the generalized Binet formula for the complex-type Padovan-
p numbers with the following theorem.

Theorem 1. Let n ≥ p + 1 and let p be a positive odd integer such that
p ≥ 3, then

dPa,p,n
j,k =

detV p+2
j,k

detV p+2
,

where (Dp)
n =

[
dPa,p,n
j,k

]
.

Proof. Since the equation xp+2 + xp − ip+2 = 0 does not have multiple
roots for p ≥ 3, when p is a positive odd integer, the eigenvalues of the
complex-type Padovan-p matrix Dp are distinct. Then, it is clear that
Dp is diagonalizable. Let Rp = diag (δ1, δ2, . . . , δp+2), then we may write
DpV

p+2 = V p+2Rp. Since the matrix V p+2 is invertible, we obtain the equa-
tion

(
V p+2

)−1
DpV

p+2 = Rp. Thus,Dp is similar toRp; hence, (Dp)
n V p+2 =

V p+2 (Rp)
n for n ≥ p+ 1. Therefore we have the following linear system of

equations:
dPa,p,n
j,1 (δ1)

p+1 + dPa,p,n
j,2 (δ1)

p + · · ·+ dPa,p,n
j,p+2 = (δ1)

n+p+2−t

dPa,p,n
j,1 (δ2)

p+1 + dPa,p,n
j,2 (δ2)

p + · · ·+ dPa,p,n
j,p+2 = (δ2)

n+p+2−t

...
dPa,p,n
j,1 (δp+2)

p+1 + dPa,p,n
j,2 (δp+2)

p + · · ·+ dPa,p,n
j,p+2 = (δp+2)

n+p+2−t .

Then we conclude that

dPa,p,n
j,k =

detV p+2
j,k

detV p+2
,

for each j, k = 1, 2, . . . , p+ 2. �
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Thus by Theorem 1 and the matrix (Dp)
n, we have the following useful

result for the complex-type Padovan-p numbers.

Corollary 1. Let p be a positive odd integer such that p ≥ 3 and Pa(i)p (n)
be the nth element of the complex-type Padovan-p number for n ≥ p + 1,
then

Pa(i)p (n) =
detV p+2

p+2,1

detV p+2

and

Pa(i)p (n) =
detV p+2

2,3

ip+2 · detV p+2
=

detV p+2
3,4

ip+2 · detV p+2
= · · · =

detV p+2
p+1,p+2

ip+2 · detV p+2
.

Let C (c1, c2, . . . , cv) be a v × v companion matrix as follows:

C (c1, c2, . . . , cv) =


c1 c2 · · · cv−1 cv
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

Theorem 2 (Chen and Louck [3]). The (i, j) entry c(n)i,j (c1, c2, . . . , cv) in
the matrix Cn (c1, c2, . . . , cv) is given by the following formula:
(3)

c
(n)
i,j (c1, c2, . . . , cv) =

∑
(t1,t2,...,tv)

tj + tj+1 + · · ·+ tv
t1 + t2 + · · ·+ tv

×
(
t1 + · · ·+ tv
t1, . . . , tv

)
ct11 · · · c

tv
v ,

where the summation is over nonnegative integers satisfying t1 +2t2 + · · ·+
vtv = n− i+ j,

(
t1+···+tv
t1,...,tv

)
= (t1+···+tv)!

t1!···tv ! is a multinomial coefficient, and the
coefficients in (3) are defined to be 1 if n = i− j.

Here we investigate combinatorial representations for the complex-type
Padovan-p numbers by the following corollary.

Corollary 2. (i) For n ≥ p+ 1,

Pa(i)p (n) =
∑

(t1,t2,...,tp+2)

(
t1 + t2 + · · ·+ tp+2

t1, t2, . . . , tp+2

)
(−1)t2

(
ip+2

)tp+2 ,

where the summation is over nonnegative integers satisfying

t1 + 2t2 + · · ·+ (p+ 2) tp+2 = n− p− 1.

(ii) For n ≥ p+ 1,

Pa
(i)
p (n) =

1

ip+2

∑
(t1,t2,...,tp+2)

t3 + t4 + · · ·+ tp+2

t1 + t2 + · · ·+ tp+2
×
(t1 + t2 + · · ·+ tp+2

t1, t2, . . . , tp+2

)
(−1)t2

(
ip+2

)tp+2

=
1

ip+2

∑
(t1,t2,...,tp+2)

t4 + t5 + · · ·+ tp+2

t1 + t2 + · · ·+ tp+2
×
(t1 + t2 + · · ·+ tp+2

t1, t2, . . . , tp+2

)
(−1)t2

(
ip+2

)tp+2
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= . . .

=
1

ip+2

∑
(t1,t2,...,tp+2)

tp+2

t1 + t2 + · · ·+ tp+2
×
(t1 + t2 + · · ·+ tp+2

t1, t2, . . . , tp+2

)
(−1)t2

(
ip+2

)tp+2 ,

where the summation is over nonnegative integers satisfying

t1 + 2t2 + · · ·+ (p+ 2) tp+2 = n+ 1.

Proof. In Theorem 2, if we take i = p + 2 and j = 1 for the case (i), and
i = ε − 1 and j = ε such that 3 ≤ ε ≤ p + 2 for the case (ii), then we can
directly see the conclusions from (Dp)

n. �

Now we consider the permanental representations for the complex-type
Padovan-p numbers.

Definition 1. A u×v real matrixM = [mi,j ] is called a contractible matrix
in the kth column (resp. row) if the kth column (resp. row) contains exactly
two non-zero entries.

Suppose that x1, x2, . . . , xu are row vectors of the matrix M . If M is
contractible in the kth column such that mi,k 6= 0,mj,k 6= 0 and i 6= j, then
the (u− 1)× (v − 1) matrixMij:k obtained fromM by replacing the ith row
with mi,kxj +mj,kxi and deleting the jth row. The kth column is called the
contraction in the kth column relative to the ith row and the jth row.

In [2], Brualdi and Gibson obtained that per (M) = per (N) ifM is a real
matrix of order α > 1 and N is a contraction of M.

Now we concentrate on finding relationships among the complex-type
Padovan-p numbers and the permanents of certain matrices that are ob-
tained by using the generating matrix of the Padovan-p numbers. Let p be a
positive odd integer such that p ≥ 3 and let A(i)

p,m =
[
a
(p,i,m)
k,j

]
be the m×m

super-diagonal matrix, defined by

a
(p,i,m)
k,j =


ip+2, if k = τ and j = τ + p+ 1 for 1 ≤ τ ≤ m− p− 1,
1, if k = τ + 1 and j = τ for 1 ≤ τ ≤ m− 1,
−1, if k = τ and j = τ + 1 for 1 ≤ τ ≤ m− 1,
0, otherwise.

, for m ≥ p+2.

Then we have the following theorem.

Theorem 3. For m ≥ p+ 2 and p ≥ 3,

perA(i)
p,m = Pa(i)p (m+ p+ 1) .

Proof. Let us consider the matrix A(i)
p,m and let the equation be hold for m ≥

p+ 2. We prove by induction on m. Then we show that the equation holds
for m + 1. If we expand the A(i)

p,m by the Laplace expansion of permanent
with respect to the first row, then we obtain

perA
(i)
p,m+1 = −perA

(i,k)
m−1 + ip+2 · perA(i)

p,m−p−1.
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Since perA(i)
p,m−1 = Pa

(i)
p (m+ p) and perA(i)

p,m−p−1 = Pa
(i)
p (m), it is clear

that perA(i)
p,m+1 = Pa

(i)
p (m+ p+ 2). So the proof is complete. �

Let p be a positive odd integer such that p ≥ 3 and let B(i)
p,m =

[
b
(p,i,m)
k,j

]
be the m×m super-diagonal matrix, defined by

b
(p,i,m)
k,j =



ip+2, if k = τ and j = τ + p+ 1 for 1 ≤ τ ≤ m− p− 1,

1,
if k = τ + 1 and j = τ for 1 ≤ τ ≤ m− 4 and
k = τ and j = τ + 1 for m− 2 ≤ τ ≤ m− 1,

−1,
if k = τ and j = τ + 1 for 1 ≤ τ ≤ m− 3 and
k = τ + 1 and j = τ for m− 3 ≤ τ ≤ m− 1,

0, otherwise,

for m ≥ p+ 2.
Then we have the following theorem.

Theorem 4. For m ≥ p+ 2 and p ≥ 3,

perB(i)
p,m = −Pa(i)p (m+ p+ 1) .

Proof. Let us consider the matrix B(i)
p,m and let the equation be hold for m ≥

p+ 2. We prove by induction on m. Then we show that the equation holds
for m + 1. If we expand the B(i)

p,m by the Laplace expansion of permanent
with respect to the first row, then we obtain

perB
(i)
p,m+1 = −perB

(i)
m−1 + ip+2 · perB(i)

p,m−p−1.

Since perB(i)
p,m−1 = −Pa(i)p (m+ p) and perB

(i)
p,m−p−1 = −Pa(i)p (m), it is

clear that perB(i)
p,m+1 = −Pa

(i)
p (m+ p+ 2). So the proof is complete. �

Assume next that C(i)
p,m =

[
c
(p,i,m)
k,j

]
be the m×m matrix, defined by

(m− 3) th
↓

C
(i)
p,m =



1 · · · 1 0 0 0
1
0
... B

(i)
m−1

0
0


, for m > p+ 2,

then we have the following results.

Theorem 5. For m > p+ 2 and p ≥ 3,

perC(i)
p,m = −

m+p∑
u=1

Pa(i)p (u) .



Özgür Erdağ, Serpı̇l Halıcı, Ömür Devecı̇ 85

Proof. If we extend perC(i)
p,m with respect to the first row, we write

perC(i)
p,m = perC

(i)
p,m−1 + perB

(i)
p,m−1.

Thus, by the results and an inductive argument, the proof is easily seen. �

A matrixM is called convertible if there is an n×n (1,−1)-matrix K such
that perM = det (M ◦K), where M ◦K denotes the Hadamard product of
M and K.

Now we give relationships among the complex-type Padovan-p numbers
and the determinants of certain matrices which are obtained by using the
matrix A(i)

p,m, B(i)
p,m and C(i)

p,m. Let m > p+2 and let H be the m×m matrix,
defined by

H =


1 1 · · · 1 1
−1 1 · · · 1 1
1 −1 · · · 1 1
...

...
. . .

...
...

1 1 · · · −1 1

 .
Corollary 3. For m > p+ 2 and p ≥ 3,

det
(
A(i)

p,m ◦H
)
= Pa(i)p (m+ p+ 1) ,

det
(
B(i)

p,m ◦H
)
= −Pa(i)p (m+ p+ 1)

and

det
(
C(i)
p,m ◦H

)
= −

m+p∑
u=1

Pa(i)p (u) .

Proof. Since perA(i,k)
m = det

(
A

(i)
p,m ◦H

)
, perB(i,k)

m = det
(
B

(i)
p,m ◦H

)
and

perC
(i,k)
m = det

(
C

(i)
p,m ◦H

)
for m > p + 2, by Theorem 3, Theorem 4 and

Theorem 5, we have the conclusion. �

It is easy to see that the generating function of the complex-type Padovan-
p sequence

{
Pa

(i)
p (n)

}
is as follows:

g (x) =
xp+1

1 + x2 − ip+2 · xp+2
,

where p is a positive odd integer such that p ≥ 3.
Now we are concerned about the exponential representation of the complex-

type Padovan-p numbers by the aid of the generating function with the
following theorem.
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Theorem 6. The complex-type Padovan-p sequence
{
Pa

(i)
p (n)

}
have the

following exponential representation:

g (x) = xp+1 exp

( ∞∑
u=1

(x)u

u

(
−x+ ip+2 · xp+1

)u) ,

where p is a positive odd integer such that p ≥ 3.

Proof. Since

ln g (x) = lnxp+1 − ln
(
1 + x2 − ip+2 · xp+2

)
and

− ln
(
1 + x2 − ip+2 · xp+2

)
= −[−x

(
−x+ ip+2 · xp+1

)
− 1

2
x2
(
−x+ ip+2 · xp+1

)2 − · · ·
− 1

u
xu
(
−x+ ip+2 · xp+1

)u − · · · ]
it is clear that

g (x) = xp+1 exp

( ∞∑
u=1

(x)u

u

(
−x+ ip+2 · xp+1

)u)
.

Thus we have the conclusion. �

Now we give the sums of the complex-type Padovan-p numbers. Let

Sn =
n∑

u=1

Pa(i)p (u) ,

for n ≥ p + 1 and p is a positive odd integer such that p ≥ 3, and suppose
that Rp is the (p+ 3)× (p+ 3) matrix such that

Rp =


1 0 · · · 0
1
0 Dp
...
0

 .
If we use induction on n, then we obtain

(Rp)
n =


1 0 · · · 0

Sn+p

Sn+p−1 (Dp)
n

...
Sn−1

 .
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